Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Radiother Oncol ; 180: 109491, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706956

RESUMO

BACKGROUND AND PURPOSE: In this study, fluoromisonidazole positron emission tomography (F-MISO PET/CT) was used to evaluate tumor hypoxia and re-oxygenation in patients with lung tumors treated with stereotactic body radiation therapy (SBRT). MATERIALS AND METHODS: Patients with T1-2 N0 lung cancer were included in this study. The prescribed dose was 48-52 Gy in four fractions. F-MISO PET/CT was performed twice, before SBRT and 1-3 days after the first irradiation. The maximum standardized uptake value (SUVmax) and tumor/muscle ratio (TMR) were evaluated as indicators of hypoxia. The threshold for hypoxia was defined as a TMR of 1.30 or more. RESULTS: Between 2016 and 2021, 15 patients were included. Pre-treatment tumor hypoxia was observed in nine tumors (60 %). TMR in all six tumors without pre-treatment hypoxia rose after single high-dose irradiation. In contrast, TMR in six of nine tumors with pre-treatment hypoxia dropped after irradiation, suggesting re-oxygenation. Although no local recurrence was noted, regional and/or distant relapses were seen in four patients (27 %). Of these, three had tumors with abnormal F-MISO uptake. The remaining patient had a tumor without signs of hypoxia on pre-treatment PET/CT. The 2-year progression free survival of patients with tumors with and without pre-treatment hypoxia were 30 % and 63 %, respectively (p = 0.319). CONCLUSION: Tumor hypoxia reduced after single high-dose irradiation. Tumor with F-MISO uptake seems to be an unfavorable prognostic factor in lung SBRT.


Assuntos
Neoplasias Pulmonares , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radiocirurgia , Hipóxia Tumoral , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Pulmão/patologia , Doses de Radiação , Hipóxia Tumoral/efeitos da radiação , Tomografia por Emissão de Pósitrons , Radiossensibilizantes , Estudos Prospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
2.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163354

RESUMO

Radiotherapy is a crucial cancer treatment, but its outcome is still far from satisfactory. One of the reasons that cancer cells show resistance to ionizing radiation is hypoxia, defined as a low level of oxygenation, which is typical for solid tumors. In the hypoxic environment, cancer cells are 2-3 times more resistant to ionizing radiation than normoxic cells. To overcome this important impediment, radiosensitizers should be introduced to cancer therapy. When modified with an electrophilic substituent, nucleosides may undergo efficient dissociative electron attachment (DEA) that leaves behind nucleoside radicals, which, in secondary reactions, are able to induce DNA damage, leading to cancer cell death. We report the radiosensitizing effect of one of the best-known DEA-type radiosensitizers-5-bromo-2'-deoxyuridine (BrdU)-on breast (MCF-7) and prostate (PC3) cancer cells under both normoxia and hypoxia. MCF-7 and PC3 cells were treated with BrdU to investigate the effect of hypoxia on cell proliferation, incorporation into DNA and radiosensitivity. While the oxygen concentration did not significantly affect the efficiency of BrdU incorporation into DNA or the proliferation of tumor cells, the radiosensitizing effect of BrdU on hypoxic cells was more evident than on normoxic cells. Further mechanistic studies performed with the use of flow cytometry showed that under hypoxia, BrdU increased the level of histone H2A.X phosphorylation after X-ray exposure to a greater extent than under normal oxygenation conditions. These results confirm that the formation of double-strand breaks in hypoxic BrdU-treated cancer cells is more efficient. In addition, by performing stationary radiolysis of BrdU solution in the presence of an ●OH radical scavenger, we compared the degree of its electron-induced degradation under aerobic and anaerobic conditions. It was determined that radiodegradation under anaerobic conditions was almost twice as high as that under aerobic conditions.


Assuntos
Bromodesoxiuridina/farmacologia , Histonas/metabolismo , Neoplasias/genética , Radiossensibilizantes/farmacologia , Anaerobiose , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Células MCF-7 , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/radioterapia , Células PC-3 , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Hipóxia Tumoral/efeitos da radiação
3.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055167

RESUMO

The receptor tyrosine kinase AXL (RTK-AXL) is implicated in therapy resistance and tumor progression in glioblastoma multiforme (GBM). Here, we investigated therapy-induced receptor modifications and how endogenous RTK-AXL expression and RTK-AXL inhibition contribute to therapy resistance in GBM. GBM cell lines U118MG and SF126 were exposed to temozolomide (TMZ) and radiation (RTX). Receptor modifications in response to therapy were investigated on protein and mRNA levels. TMZ-resistant and RTK-AXL overexpressing cell lines were exposed to increasing doses of TMZ and RTX, with and without RTK-AXL tyrosine kinase inhibitor (TKI). Colorimetric microtiter (MTT) assay and colony formation assay (CFA) were used to assess cell viability. Results showed that the RTK-AXL shedding product, C-terminal AXL (CT-AXL), rises in response to repeated TMZ doses and under hypoxia, acts as a surrogate marker for radio-resistance. Endogenous RTX-AXL overexpression leads to therapy resistance, whereas combination therapy of TZM and RTX with TKI R428 significantly increases therapeutic effects. This data proves the role of RTK-AXL in acquired and intrinsic therapy resistance. By demonstrating that therapy resistance may be overcome by combining AXL TKI with standard treatments, we have provided a rationale for future study designs investigating AXL TKIs in GBM.


Assuntos
Benzocicloeptenos/farmacologia , Neoplasias Encefálicas/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/genética , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Temozolomida/farmacologia , Triazóis/farmacologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Resistencia a Medicamentos Antineoplásicos/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/metabolismo , Glioblastoma/terapia , Humanos , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/efeitos da radiação , Receptor Tirosina Quinase Axl
4.
Radiat Oncol ; 16(1): 199, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635135

RESUMO

BACKGROUND: Hypoxia is known to be prevalent in solid tumors such as non-small cell lung cancer (NSCLC) and reportedly correlates with poor prognostic clinical outcome. PET imaging can provide in-vivo hypoxia measurements to support targeted radiotherapy treatment planning. We explore the potential of proton therapy in performing patient-specific dose escalation and compare it with photon volumetric modulated arc therapy (VMAT). METHODS: Dose escalation has been calibrated to the patient specific tumor response of ten stage IIb-IIIb NSCLC patients by combining HX4-PET imaging and radiobiological modelling of oxygen enhancement ratio (OER) to target variable tumor hypoxia. In a dose-escalation-by-contour approach, escalated dose levels were simulated to the most hypoxic region of the primary target and its effectiveness in improving loco-regional tumor control was assessed. Furthermore, the impact on normal tissue of proton treatments including dose escalation was evaluated in comparison to the normal tissue complication probability (NTCP) of conventional VMAT plans. RESULTS: Ignoring regions of tumor hypoxia can cause overestimation of TCP values by up to 10%, which can effectively be recovered on average to within 0.9% of the nominal TCP, using patient-specific dose escalations of up to 22% of the prescribed dose to PET defined hypoxic regions. Despite such dose escalations, the use of protons could also simultaneously reduce mean doses to the heart (- 14.3 GyRBE), lung (- 8.3 GyRBE), esophagus (- 6.9 GyRBE) and spinal cord (- 3.8 Gy) compared to non-escalated VMAT plans. These reductions are predicted to lead to clinically relevant decreases in NTCP for radiation-induced pneumonitis (- 11.3%), high grade heart toxicity (- 7.4%) and esophagitis (- 7.5%). CONCLUSIONS: This study suggests that the administration of proton therapy for dose escalation to patient specific regions of tumor hypoxia in the treatment of NSCLC can mitigate TCP reduction due to hypoxia-induced radio resistance, while simultaneously reducing NTCP levels even when compared to non-escalated treatments delivered with state-of-the-art photon techniques.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Hipóxia Tumoral/efeitos da radiação , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Transferência Linear de Energia , Masculino , Pessoa de Meia-Idade , Órgãos em Risco , Terapia com Prótons/efeitos adversos , Dosagem Radioterapêutica
5.
Chem Commun (Camb) ; 57(62): 7625-7628, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34235523

RESUMO

A galactose-targeting supramolecular photosensitizer system DOX@GP5⊃NBSPD was constructed based on a host-guest inclusion complex. The supramolecular system could achieve efficient delivery of DOX/NBS and selective release under GSH stimulation. In vitro studies revealed that this supramolecular DOX/NBS co-delivery system exhibited high ROS production and excellent cancer cell damage capability in a hypoxic environment. This strategy can therefore achieve enhanced hypoxic-tumor therapeutic effectiveness by chemo-photodynamic combination.


Assuntos
Calixarenos/química , Calixarenos/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Doxorrubicina/química , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Fotoquimioterapia
6.
Nat Commun ; 12(1): 523, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483518

RESUMO

The outcome of radiotherapy is significantly restricted by tumor hypoxia. To overcome this obstacle, one prevalent solution is to increase intratumoral oxygen supply. However, its effectiveness is often limited by the high metabolic demand for O2 by cancer cells. Herein, we develop a hybrid semiconducting organosilica-based O2 nanoeconomizer pHPFON-NO/O2 to combat tumor hypoxia. Our solution is twofold: first, the pHPFON-NO/O2 interacts with the acidic tumor microenvironment to release NO for endogenous O2 conservation; second, it releases O2 in response to mild photothermal effect to enable exogenous O2 infusion. Additionally, the photothermal effect can be increased to eradicate tumor residues with radioresistant properties due to other factors. This "reducing expenditure of O2 and broadening sources" strategy significantly alleviates tumor hypoxia in multiple ways, greatly enhances the efficacy of radiotherapy both in vitro and in vivo, and demonstrates the synergy between on-demand temperature-controlled photothermal and oxygen-elevated radiotherapy for complete tumor response.


Assuntos
Óxido Nítrico/metabolismo , Compostos de Organossilício/metabolismo , Oxigênio/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/metabolismo , Pontos Quânticos/metabolismo , Linhagem Celular Tumoral , Humanos , Compostos de Organossilício/química , Fármacos Fotossensibilizantes/uso terapêutico , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico , Radioterapia/efeitos adversos , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos da radiação
7.
Int J Radiat Oncol Biol Phys ; 109(2): 603-613, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002542

RESUMO

PURPOSE: The extreme microscopic heterogeneity of tumors makes it difficult to characterize tumor hypoxia. We evaluated how changes in the spatial resolution of oxygen imaging could alter measures of tumor hypoxia and their correlation to radiation therapy response. METHODS AND MATERIALS: Cherenkov-Excited Luminescence Imaging in combination with an oxygen probe, Oxyphor PtG4 was used to directly image tumor pO2 distributions with 0.2 mm spatial resolution at the time of radiation delivery. These pO2 images were analyzed with variations of reduced spatial resolution from 0.2 mm to 5 mm, to investigate the influence of how reduced imaging spatial resolution would affect the observed tumor hypoxia. As an in vivo validation test, mice bearing tumor xenografts were imaged for hypoxic fraction and median pO2 to examine the predictive link with tumor response to radiation therapy, while accounting for spatial resolution. RESULTS: In transitioning from voxel sizes of 200 µm to 3 mm, the median pO2 values increased by a few mm Hg, and the hypoxic fraction decreased by more than 50%. When looking at radiation-responsive tumors, the median pO2 values changed just a few mm Hg as a result of treatment, and the hypoxic fractions changed by as much as 50%. This latter change, however, could only be seen when sampling was performed with high spatial resolution. Median pO2 or similar quantities obtained from low resolution measurements are commonly used in clinical practice, however these parameters are much less sensitive to changes in the tumor microenvironment than the tumor hypoxic fraction obtained from high-resolution oxygen images. CONCLUSIONS: This study supports the hypothesis that for adequate measurements of the tumor response to radiation therapy, oxygen imaging with high spatial resolution is required to accurately characterize the hypoxic fraction.


Assuntos
Imagem Óptica , Oxigênio/metabolismo , Razão Sinal-Ruído , Hipóxia Tumoral/efeitos da radiação , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Humanos , Luminescência , Camundongos
8.
Int J Radiat Oncol Biol Phys ; 110(1): 21-34, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30836165

RESUMO

PURPOSE: To review the radiobiological mechanisms of stereotactic body radiation therapy stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS). METHODS AND MATERIALS: We reviewed previous reports and recent observations on the effects of high-dose irradiation on tumor cell survival, tumor vasculature, and antitumor immunity. We then assessed the potential implications of these biological changes associated with SBRT and SRS. RESULTS: Irradiation with doses higher than approximately 10 Gy/fraction causes significant vascular injury in tumors, leading to secondary tumor cell death. Irradiation of tumors with high doses has also been reported to increase the antitumor immunity, and various approaches are being investigated to further elevate antitumor immunity. The mechanism of normal tissue damage by high-dose irradiation needs to be further investigated. CONCLUSIONS: In addition to directly killing tumor cells, high-dose irradiation used in SBRT and SRS induces indirect tumor cell death via vascular damage and antitumor immunity. Further studies are warranted to better understand the biological mechanisms underlying the high efficacy of clinical SBRT and SRS and to further improve the efficacy of SBRT and SRS.


Assuntos
Morte Celular , Neoplasias/radioterapia , Radiocirurgia/métodos , Animais , Vasos Sanguíneos/patologia , Vasos Sanguíneos/efeitos da radiação , Carcinoma 256 de Walker/irrigação sanguínea , Carcinoma 256 de Walker/patologia , Carcinoma 256 de Walker/radioterapia , Morte Celular/genética , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , Fracionamento da Dose de Radiação , Endotélio Vascular/citologia , Humanos , Morte Celular Imunogênica , Camundongos , Camundongos Nus , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Órgãos em Risco/irrigação sanguínea , Órgãos em Risco/efeitos da radiação , Radiobiologia , Ratos , Hipóxia Tumoral/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Molecules ; 27(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35011360

RESUMO

Anticancer treatment is largely affected by the hypoxic tumor microenvironment (TME), which causes the resistance of the tumor to radiotherapy. Combining radiosensitizer compounds and O2 self-enriched moieties is an emerging strategy in hypoxic-tumor treatments. Herein, we engineered GdW10@PDA-CAT (K3Na4H2GdW10O36·2H2O, GdW10, polydopamine, PDA, catalase, CAT) composites as a radiosensitizer for the TME-manipulated enhancement of radiotherapy. In the composites, Gd (Z = 64) and W (Z = 74), as the high Z elements, make X-ray gather in tumor cells, thereby enhancing DNA damage induced by radiation. CAT can convert H2O2 to O2 and H2O to enhance the X-ray effect under hypoxic TME. CAT and PDA modification enhances the biocompatibility of the composites. Our results showed that GdW10@PDA-CAT composites increased the efficiency of radiotherapy in HT29 cells in culture. This polyoxometalates and O2 self-supplement composites provide a promising radiosensitizer for the radiotherapy field.


Assuntos
Gadolínio/química , Nanocompostos/química , Radiossensibilizantes/química , Hipóxia Tumoral/efeitos da radiação , Tungstênio/química , Ânions/química , Materiais Biocompatíveis/química , Catalase/metabolismo , Linhagem Celular Tumoral , Células HT29 , Humanos , Peróxido de Hidrogênio/metabolismo , Indóis/química , Oxigênio/metabolismo , Polieletrólitos/química , Polímeros/química , Radiossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral
10.
J Nucl Med ; 62(4): 471-478, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32859699

RESUMO

Tumor hypoxia in head-and-neck squamous cell carcinoma (HNSCC) leads to an immunosuppressive microenvironment and reduces the response to radiotherapy. In this prospective imaging trial, we investigated potential interactions between functional hypoxia imaging and infiltrating lymphocyte levels as a potential predictor for treatment response in HNSCC patients. Methods: In total, 49 patients receiving definitive chemoradiation for locally advanced HNSCCs underwent pretherapeutic biopsies and peritherapeutic hypoxia imaging using 18F-misonidazole PET at weeks 0, 2, and 5 during chemoradiation. Hematoxylin-eosin and immunohistochemical stainings for tumor-infiltrating lymphocytes, tissue-based hypoxia, and microvascular markers were analyzed and correlated with the longitudinal hypoxia dynamics and patient outcomes. Results: High levels of tumor-infiltrating total lymphocytes correlated with superior locoregional control (LRC) (hazard ratio [HR], 0.279; P = 0.011) and progression-free survival (PFS) (HR, 0.276; P = 0.006). Similarly, early resolution of 18F-misonidazole PET-detected tumor hypoxia quantified by 18F-misonidazole dynamics between weeks 0 and 2 of chemoradiation was associated with improved LRC (HR, 0.321; P = 0.015) and PFS (HR, 0.402; P = 0.043). Outcomes in the favorable early hypoxia resolution subgroup significantly depended on infiltrating lymphocyte counts, with patients who showed both an early hypoxia response and high lymphocyte infiltration levels exhibiting significantly improved LRC (HR, 0.259; P = 0.036) and PFS (HR, 0.242; P = 0.017) compared with patients with an early hypoxia response but low lymphocyte counts. These patients exhibited oncologic results comparable to those of patients with no hypoxia response within the first 2 wk of chemoradiation. Conclusion: This analysis established a clinical hypoxia-immune score that predicted treatment responses and outcomes in HNSCC patients undergoing chemoradiation and may help to devise novel concepts for biology-driven personalization of chemoradiation.


Assuntos
Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/terapia , Linfócitos/imunologia , Terapia Neoadjuvante , Tomografia por Emissão de Pósitrons , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Adulto , Feminino , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/imunologia , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Estudos Prospectivos
11.
ACS Appl Mater Interfaces ; 12(52): 57768-57781, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33326213

RESUMO

Solid tumors inevitably develop radioresistance due to low oxygen partial pressure in the tumor microenvironment. Despite numerous attempts, there are still few effective ways to avoid the hypoxia-induced poor radiotherapeutic effect. To overcome this problem, platinum (Pt) nanodots were fabricated into a mesoporous bismuth (Bi)-based nanomaterial to construct a biodegradable nanocomposite BiPt-folic acid-modified amphiphilic polyethylene glycol (PFA). BiPt-PFA could act as a radiosensitizer to enhance the absorption of X-rays at the tumor site and simultaneously trigger response behaviors related to the tumor microenvironment due to the enrichment of materials in the tumor area. During this process, the Bi-based component consumed glutathione via coordination, thus altering the oxidative stress balance, while Pt nanoparticles catalyzed the decomposition of hydrogen peroxide to generate oxygen, thereby relieving tumor hypoxia. Both Pt and Bi thus co-modulated the tumor microenvironment to improve the radiotherapeutic effect. In addition, Pt dots in BiPt-PFA had strong near-infrared absorption ability and created an intensive photothermal therapeutic effect. Modulation of the tumor microenvironment could thus improve the therapeutic effect in hypoxic tumors by a combination of photothermal therapy and enhanced radiotherapy. BiPt-PFA, as a biodegradable nanocomposite, may thus modulate the tumor microenvironment to enhance the hypoxic tumor therapeutic effect by thermoradiotherapy.


Assuntos
Bismuto/química , Nanocompostos/química , Radiossensibilizantes/química , Hipóxia Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos , Hipertermia Induzida , Nanopartículas Metálicas/química , Camundongos , Platina/química , Polietilenoglicóis/química , Porosidade , Radiossensibilizantes/farmacologia , Segurança , Solubilidade , Hipóxia Tumoral/efeitos da radiação , Microambiente Tumoral/efeitos da radiação , Água/química
12.
Cell Death Dis ; 11(12): 1068, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318475

RESUMO

Esophageal squamous cell carcinoma (ESCC), the most frequent esophageal cancer (EC) subtype, entails dismal prognosis. Hypoxia, a common feature of advanced ESCC, is involved in resistance to radiotherapy (RT). RT response in hypoxia might be modulated through epigenetic mechanisms, constituting novel targets to improve patient outcome. Post-translational methylation in histone can be partially modulated by histone lysine demethylases (KDMs), which specifically removes methyl groups in certain lysine residues. KDMs deregulation was associated with tumor aggressiveness and therapy failure. Thus, we sought to unveil the role of Jumonji C domain histone lysine demethylases (JmjC-KDMs) in ESCC radioresistance acquisition. The effectiveness of RT upon ESCC cells under hypoxic conditions was assessed by colony formation assay. KDM3A/KDM6B expression, and respective H3K9me2 and H3K27me3 target marks, were evaluated by RT-qPCR, Western blot, and immunofluorescence. Effect of JmjC-KDM inhibitor IOX1, as well as KDM3A knockdown, in in vitro functional cell behavior and RT response was assessed in ESCC under hypoxic conditions. In vivo effect of combined IOX1 and ionizing radiation treatment was evaluated in ESCC cells using CAM assay. KDM3A, KDM6B, HIF-1α, and CAIX immunoexpression was assessed in primary ESCC and normal esophagus. Herein, we found that hypoxia promoted ESCC radioresistance through increased KDM3A/KDM6B expression, enhancing cell survival and migration and decreasing DNA damage and apoptosis, in vitro. Exposure to IOX1 reverted these features, increasing ESCC radiosensitivity and decreasing ESCC microtumors size, in vivo. KDM3A was upregulated in ESCC tissues compared to the normal esophagus, associating and colocalizing with hypoxic markers (HIF-1α and CAIX). Therefore, KDM3A upregulation in ESCC cell lines and primary tumors associated with hypoxia, playing a critical role in EC aggressiveness and radioresistance. KDM3A targeting, concomitant with conventional RT, constitutes a promising strategy to improve ESCC patients' survival.


Assuntos
Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Tolerância a Radiação , Hipóxia Tumoral , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/efeitos da radiação , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Hidroxiquinolinas/farmacologia , Histona Desmetilases com o Domínio Jumonji/genética , Tolerância a Radiação/efeitos dos fármacos , Radiação Ionizante , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/genética , Hipóxia Tumoral/efeitos da radiação
13.
Semin Nucl Med ; 50(6): 562-583, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33059825

RESUMO

Tumor regions that are transiently or chronically undersupplied with oxygen (hypoxia) and nutrients, and enriched with acidic waste products, are common due to an abnormal and inefficient tumor vasculature, and a deviant highly glycolytic energy metabolism. There is compelling evidence that tumor hypoxia is strongly linked to poor prognosis since oxygen-deprived cells are highly resistant to therapy including radio- and chemotherapy, and survival of such cells is a primary cause of disease relapse. Despite a general improvement in cancer survival rates, hypoxia remains a formidable challenge. Recent progress in radiation delivery systems with improved spatial accuracy that allows dose escalation to hypoxic tumors or even tumor subvolumes, and the development of hypoxia-selective drugs, including bioreductive prodrugs, holds great promise for overcoming this obstacle. However, apart from one notable exception, translation of promising preclinical therapies to the clinic have largely been disappointing. A major obstacle in clinical trials on hypoxia-targeting strategies has been the lack of reliable information on tumor hypoxia, which is crucial for patient stratification into groups of those that are likely to benefit from intervention and those who are not. Further, in many newer trials on hypoxia-selective drugs the choice of cancer disease and combination therapy has not always been ideal, especially not for clinical proof of principle trials. Clearly, there is a pending need for clinical applicable methodologies that may allow us to quantify, map and monitor hypoxia. Molecular imaging may provide the information required for narrowing the gap between potential and actual patient benefit of hypoxia-targeting strategies. The grand majority of preclinical and clinical work has focused on the usefulness of PET-based assessment of hypoxia-selective tracers. Since hypoxia PET has profound inherent weaknesses, the use of other methodologies, including more indirect methods that quantifies blood flow or oxygenation-dependent flux changes through ATP-generating pathways (eg, anaerobic glycolysis) is being extensively studied. In this review, we briefly discuss established and emerging hypoxia-targeting strategies, followed by a more thorough evaluation of strengths and weaknesses of clinical applicable imaging methodologies that may guide timely treatment intensification to overcome hypoxia-driven resistance. Historically, most evidence for the linkage between hypoxia and poor outcome is based on work in the field of radiotherapy. Therefore, main emphasis in this review is on targeting and imaging of hypoxia for improved radiotherapy.


Assuntos
Diagnóstico por Imagem , Radioterapia Guiada por Imagem , Hipóxia Tumoral/efeitos da radiação , Humanos
14.
Adv Mater ; 32(45): e2003471, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33029855

RESUMO

As a common feature in a majority of malignant tumors, hypoxia has become the Achilles' heel of photodynamic therapy (PDT). The development of type-I photosensitizers that show hypoxia-tolerant PDT efficiency provides a straightforward way to address this issue. However, type-I PDT materials have rarely been discovered. Herein, a π-conjugated molecule with A-D-A configuration, COi6-4Cl, is reported. The H2 O-dispersible nanoparticle of COi6-4Cl can be activated by an 880 nm laser, and displays hypoxia-tolerant type I/II combined PDT capability, and more notably, a high NIR-II fluorescence with a quantum yield over 5%. Moreover, COi6-4Cl shows a negligible photothermal conversion effect. The non-radiative decay of COi6-4Cl is suppressed in the dispersed and aggregated state due to the restricted molecular vibrations and distinct intermolecular steric hindrance induced by its four bulky side chains. These features make COi6-4Cl a distinguished single-NIR-wavelength-activated phototheranostic material, which performs well in NIR-II fluorescence-guided PDT treatment and shows an enhanced in vivo anti-tumor efficiency over the clinically approved Chlorin e6, by the equal stresses on hypoxia-tolerant anti-tumor therapy and deep-penetration imaging. Therefore, the great potential of COi6-4Cl in precise PDT cancer therapy against hypoxia challenges is demonstrated.


Assuntos
Raios Infravermelhos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Nanomedicina Teranóstica/métodos , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Linhagem Celular Tumoral , Clorofilídeos , Humanos , Nanopartículas/química , Porfirinas/química , Porfirinas/farmacologia
15.
Chem Commun (Camb) ; 56(71): 10301-10304, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32756717

RESUMO

A family of five heteroleptic complexes [Ru(C^N)(N^N)2][PF6] (HC^N = methyl 1-butyl-2-arylbenzimidazolecarboxylate; N^N = polypyridine) has been synthesized to act as biologically-compatible green light photosensitizers (PSs) with phototherapeutic indexes (PIs) up to higher than 700 under hypoxia (2% O2) in HeLa cancer cells under short time of irradiation.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Luz , Rutênio/química , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Benzimidazóis/química , Células HeLa , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
16.
PLoS One ; 15(7): e0236245, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32706818

RESUMO

We have previously demonstrated that endothelial targeting of gold nanoparticles followed by external beam irradiation can cause specific tumor vascular disruption in mouse models of cancer. The induced vascular damage may lead to changes in tumor physiology, including tumor hypoxia, thereby compromising future therapeutic interventions. In this study, we investigate the dynamic changes in tumor hypoxia mediated by targeted gold nanoparticles and clinical radiation therapy (RT). By using noninvasive whole-body fluorescence imaging, tumor hypoxia was measured at baseline, on day 2 and day 13, post-tumor vascular disruption. A 2.5-fold increase (P<0.05) in tumor hypoxia was measured two days after combined therapy, resolving by day 13. In addition, the combination of vascular-targeted gold nanoparticles and radiation therapy resulted in a significant (P<0.05) suppression of tumor growth. This is the first study to demonstrate the tumor hypoxic physiological response and recovery after delivery of vascular-targeted gold nanoparticles followed by clinical radiation therapy in a human non-small cell lung cancer athymic Foxn1nu mouse model.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas Metálicas/uso terapêutico , Hipóxia Tumoral , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/irrigação sanguínea , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Ouro/uso terapêutico , Humanos , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Camundongos , Camundongos Nus , Imagem Óptica/métodos , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Theranostics ; 10(17): 7683-7696, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685013

RESUMO

Tumor hypoxia, acidosis, and excessive reactive oxygen species (ROS) were the main characteristics of the bladder tumor microenvironment (TME), and abnormal TME led to autophagy activation, which facilitated cancer cell proliferation. The therapeutic efficacy of autophagy inhibitors might also be impeded by abnormal TME. To address these issues, we proposed a new strategy that utilized manganese dioxide (MnO2) nanoparticles to optimize the abnormal TME and revitalize autophagy inhibitors, and both oxygenation and autophagy inhibition may sensitize the tumor cells to radiation therapy. Methods: By taking advantage of the strong affinity between negatively charged MnO2 and positively charged chloroquine (CQ), the nanoparticles were fabricated by integrating MnO2 and CQ in human serum albumin (HSA)-based nanoplatform (HSA-MnO2-CQ NPs). Results: HSA-MnO2-CQ NPs NPs efficiently generated O2 and increased pH in vitro after reaction with H+/H2O2 and then released the encapsulated CQ in a H+/H2O2 concentration-dependent manner. The NPs restored the autophagy-inhibiting activity of chloroquine in acidic conditions by increasing its intracellular uptake, and markedly blocked hypoxia-induced autophagic flux. In vivo studies showed the NPs improved pharmacokinetic behavior of chloroquine and effectively accumulated in tumor tissues. The NPs exhibited significantly decreased tumor hypoxia areas and increased tumor pH, and had remarkable autophagy inhibition efficacy on bladder tumors. Finally, a significant anti-tumor effect achieved by the enhanced autophagy inhibition and radiation sensitization. Conclusions: HSA-MnO2-CQ NPs synergistically regulated the abnormal TME and inhibited autophagic flux, and effectively sensitized radiation therapy to treat bladder cancers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Quimiorradioterapia/métodos , Portadores de Fármacos/química , Radiossensibilizantes/administração & dosagem , Neoplasias da Bexiga Urinária/terapia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cloroquina/administração & dosagem , Cloroquina/farmacocinética , Sinergismo Farmacológico , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Masculino , Compostos de Manganês/administração & dosagem , Compostos de Manganês/farmacocinética , Camundongos , Nanopartículas/química , Óxidos/administração & dosagem , Óxidos/farmacocinética , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacocinética , Espécies Reativas de Oxigênio/metabolismo , Albumina Sérica Humana/química , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos da radiação , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
EBioMedicine ; 57: 102841, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32580139

RESUMO

BACKGROUND: Emerging biomarkers from medical imaging or molecular characterization of tumour biopsies open up for combining the two and exploiting their synergy in treatment planning of cancer patients. We generated a paired data set of imaging- and gene-based hypoxia biomarkers in cervical cancer, appraised the influence of intratumour heterogeneity in patient classification, and investigated the benefit of combining the methodologies in prediction of chemoradiotherapy failure. METHODS: Hypoxic fraction from dynamic contrast enhanced (DCE)-MR images and an expression signature of six hypoxia-responsive genes were assessed as imaging- and gene-based biomarker, respectively in 118 patients. FINDINGS: Dichotomous biomarker cutoff to yield similar hypoxia status by imaging and genes was defined in 41 patients, and the association was validated in the remaining 77 patients. The two biomarkers classified 75% of 118 patients with the same hypoxia status, and inconsistent classification was not related to imaging-defined intratumour heterogeneity in hypoxia. Gene-based hypoxia was independent on tumour cell fraction in the biopsies and showed minor heterogeneity across multiple samples in 9 tumours. Combining imaging- and gene-based classification gave a significantly better prediction of PFS than one biomarker alone. A combined dichotomous biomarker optimized in 77 patients showed a large separation in PFS between more and less hypoxic tumours, and separated the remaining 41 patients with different PFS. The combined biomarker showed prognostic value together with tumour stage in multivariate analysis. INTERPRETATION: Combining imaging- and gene-based biomarkers may enable more precise and informative assessment of hypoxia-related chemoradiotherapy resistance in cervical cancer. FUNDING: Norwegian Cancer Society, South-Eastern Norway Regional Health Authority, and Norwegian Research Council.


Assuntos
Biomarcadores Tumorais/genética , Proteínas de Neoplasias/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/radioterapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimiorradioterapia/efeitos adversos , Diagnóstico por Imagem , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Noruega/epidemiologia , Prognóstico , Intervalo Livre de Progressão , Resultado do Tratamento , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/genética
19.
Int J Nanomedicine ; 15: 3719-3727, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547024

RESUMO

PURPOSE: Most solid tumors contain areas of chronic hypoxia. Gold nanoparticles (GNP) have been extensively explored as enhancers of external beam radiation; however, GNP have lower cellular uptake in hypoxic conditions than under normoxic conditions. Conversely, the chelator diacetyl-bis (N(4)-methylthiosemicarbazonato) copper II (CuATSM) deposits copper in hypoxic regions, allowing for dose enhancement in previously inaccessible regions. METHODS: External beam sources with different spectra were modeled using a Monte Carlo code (EGSnrc) to evaluate radioenhancement in a layered model with metal solutions. Also considered was a simple concentric layered tumor model containing a hypoxic core with each layer varying in concentrations of either copper or gold according to hypoxic conditions. Low energy external photon beams were then projected onto the tumor to determine the regional dose enhancement dependent on hypoxic conditions. RESULTS: Dose enhancement was more pronounced for beam spectra with low energy photons (225 kVp) and was highly dependent on metal concentrations from 0.1 g/kg to 100 g/kg. Increasing the depth of the metallic solution layer from 1 cm to 6 cm decreased dose enhancement. A small increase in the dose enhancement factor (DEF) of 1.01 was predicted in the hypoxic regions of the tumor model with commonly used diagnostic concentrations of CuATSM. At threshold concentrations of toxic subcutaneous injection levels, the DEF increases to 1.02, and in simulation of a high concentration of CuATSM, the DEF increased to 1.07. High concentration treatments are also considered, as well as synergistic combinations of GNP/CuATSM treatments. CONCLUSION: The research presented is novel utilization of CuATSM to target hypoxic regions and act as a radiosensitizer by the nature of its ability to deposit copper metal in reduced tissue. We demonstrate CuATSM at high concentrations with low energy photons can increase dose deposition in hypoxic tumor regions.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Método de Monte Carlo , Compostos Organometálicos/farmacocinética , Fótons , Tiossemicarbazonas/farmacocinética , Hipóxia Tumoral , Complexos de Coordenação , Relação Dose-Resposta à Radiação , Modelos Biológicos , Imagens de Fantasmas , Radiossensibilizantes/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação
20.
Radiat Res ; 194(1): 71-80, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32352864

RESUMO

Numerous studies have shown that exosomes play important roles in tumor biology development. However, the function of exosomal protein in cancer progression under different oxygen condition after irradiation is poorly understood. In this study, non-small cell lung cancer (NSCLC) A549 cells were γ-ray irradiated under normoxic or hypoxic conditions, then the exosomes released from the irradiated cells were collected and co-cultured with nonirradiated A549 cells or human umbilical vein endothelial cells (HUVECs). It was found that the exosomes significantly promoted the proliferation, migration and invasion of A549 cells as well as the proliferation and angiogenesis of HUVECs. Moreover, the exosomes released from hypoxic cells and/or irradiated cells had more powerful driving force in tumor progression compared to that generated from normoxia cells. Meanwhile, the proteins contained in the exosomes derived from A549 cells under different conditions were detected using tandem mass tag (TMT), and their expression profiles were analyzed. It was found that the exosome-derived protein of angiopoietin-like 4 (ANGPTL4) contributed to the migration of A549 cells as well as the angiogenesis of HUVECs, suggesting its potential as an effective diagnostic biomarker of metastasis and even a therapeutic target of lung cancer.


Assuntos
Movimento Celular/efeitos da radiação , Exossomos/efeitos da radiação , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Neoplasias Pulmonares/patologia , Neovascularização Fisiológica/efeitos da radiação , Hipóxia Tumoral/efeitos da radiação , Células A549 , Proteína 4 Semelhante a Angiopoietina/metabolismo , Exossomos/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...